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Motivation
Age-Period-Cohort models are widely used in epidemiol-
ogy to project incidence rates into the future. A disease
rate is modelled, either as a either standardised morbidity
rate or standardised mortality rate depending on whether

we measure illness or death, in the form
yij
oij

. Here, yij

denotes the observed count of disease or death for all per-
sons of age i = 0, 1, . . . in calendar year (period) j; oij
denotes the population of age i in period j at risk of dis-
ease or death. It is standard to assume that counts yij
are realisations of a Poisson random variable so that we
model:

Yij ∼ Poisson(oijλij)

where Yij is a random variable, oij is the population at
risk and λij is the unknown parameter of the Poisson
distribution. The Age-Period-Cohort model for λij can
be fitted as

Yij ∼ Poisson(λij)

with
log(λij) = log(oij) + θi + γj + ψk

where θi is a set of parameters capturing the age effect,
γj are a set of parameters capturing the period effect and
ψk has been introduced as a set of parameters capturing
a cohort effect. These models are known as Age-Period-
Cohort (APC) models. Clearly there is a potential “iden-
tifiability” problem as that cohort index k is a simple
linear function of the age index i and the period index j.

The basic A-P-C model
Our models are developed for a random variable Yijlm de-
noting the number of police reported road injuries where
l indexes the Highways Authority in which the casualties
were injured and m denoting the gender of the casualty.
A basic model for such a scenario has been established [3]
We have made two extensions to this work. Firstly, rather
than the more conventional random walk parameters for
age, period and cohort we use penalised splines as previ-
ously described [2] and secondly, we consider that various
injury counts (cyclists, pedestrians, car occupants) sever-
ities (fatally, seriously or slightly injured) will exhibit an
informative correlation pattern. Hence we model:

log(λijlm) = log(oijlm) + αl + s(A) + s(P ) + s(C) + εijm

where αl are random intercepts for highways authority
nested within police authority, ε is an over-dispersion ran-
dom effect. s(·) denotes the respective penalised smooth
splines for each of the Age (A), Period (P ) and Cohort
(C) effects.

Reported road injury in the UK

•By way of illustration, this Lexis diagram represents all reported injury road collisions in
the UK between 1985 and 2014, divided by the ONS estimates of population

•Very strong cohort patterns can be seen and this insight itself has considerable implica-
tions for practice (which we can describe as “impact”)

•There are many unanswered research questions considering models fitted to different types
of injury (fatal injury, serious injury, slight injury) as well as different types of road user
(car occupant, pedestrian, cyclists, motorcyclists). This work is also potentially useful in
enhancing the use of A-P-C models generally.

The use of splines within a Bayesian framework still presents some identifiability problems within A-P-C modelling which
we mainly address through the use of penalised splines. We have applied a Gaussian process to the lower level αl to account
for spatial adjacency of highways authorities in the UK but it is also possible that 2 dimensional spline could solve the same
problem more efficiently. The judicious use of multivariate outcomes, to provide alternative solutions to the identifiability
problem, is potentially very powerful. Some researchers have been able to borrow strength from related populations and
to make predictions at the sub-national level for the same disease [3]. Our approach is to borrow strength from related
diseases as well as borrowing strength from the same disease at the sub-national level. When modelling the random intercept
αl we have successfully applied a multilevel nesting whereby highways authorities are nested within their respective police
authorities and this helps with differential reporting problems in the raw data. Similar work has considered that different
cancer registries might have different recording practices [1].

Penalised Splines

For a univariate smooth regression given by Yi = s(xi) + εi with εi ∼ N(0, σ2) we can use the following low-rank cubic term
as the basis:

s(x, θ) = β0 + β1x +

K∑
k=1

uk|x− κk|3,

with θ = (β0, β1, u1, . . . , uK)T as the vector of regression coefficients with κ1 < κ2 < · · · < κK as a set of fixed knots. In
order to penalise overfitting we minimise:

n∑
i=1

(
yi − s(xi,θ)

)2
+

1

λ
θTDθ,

where λ is an unknown smoothing parameter and D is a known positive semi-definite penalty matrix:

D =

(
02×2 02×K

0K×2 ΩK×K

)
,

where the (l, k)th entry of ΩK is |κl − κK|. This lends itself to simple reformulation as a mixed effects model of the form:

Y = Xβ +Zb + ε

where β denotes the conventional “fixed” effects, b = Ω1/2u and Z = ZΩ1/2 are treated like random effects. In our GLM
formulation the ε term is absorbed within the random component. These are simple Bayesian models to fit with Hamiltonian
Monte Carlo; Gaussian priors are assumed for smooth function regression coefficients and the nested local authority specific
intercepts. Structural correlation between different outcomes can be induced in different ways; for example it is possible to
assume common age effects across different outcomes or to allow different smooth terms but only allow the intercepts to
be correlated. The intercept terms are specifically correlated by Highways Authority and the ε terms are correlated across
road user type. Standard convergence criteria are checked, overall model fit is assessed using Gneiting’s modifications to the
Posterior Predictive Score (PPD).

Smooth function for age

Familiar age patterns are seen with road users in their
late teens / early twenties at greatest risk of road injury.
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Fitting smooth splines to

Age-Period-Cohort models

The figure below shows the smooth term for cohort; the
underlying linear trend is arbitrary.

The letters on the diagram depict significant events that
may have had an effect on driving habits within the UK
(for example the introduction of compulsory driving tests)
and the arrows point towards the cohort that would first
be affected by these events. However, the most interesting
feature is the change of shape around the 1970 cohort. Be-
cause of identifiability issues this second order change is of
more interest than the actual slope.

Illustrative results
The “caterpillar” plot below depicts point estimates
(crude per capita risk) as well as the smoothed modelled
risk for each Highways Authority. The red and green ar-
rows denote how much risk estimates are adjusted up or
down respectively through the use of model.

These plots are much more “interesting” (potentially im-
pactful) when distinct road user groups are considered as
much greater variation can be seen between the raw and
the age adjusted estimates. This work is currently being
disseminated through practitioner focussed outputs and
the underlying methodological work has been submitted
to traditional peer-reviewed academic journals.


