Hybrid Mesons in lattice QCD

JLab-overhead1QCD is the basic theory behind nuclear physics . The quarks and gluons combine together to form bound states. Currently the only confirmed type of bound states found in experiments are either mesons (quark and antiquark bound together) or baryons (a collective state of three quarks), but QCD allows other possibilities. One particularly exciting type of bound state is called a hybrid meson, where excited glue joins the quark and antiquark to form a totally new class of particle. There is a vigorous experimental program around the world searching for hybrid mesons in such places as: the Jefferson lab (pictured below) in the USA, PANDA in Germany, and at the experiments in CERN. Accurate theory prediction from lattice QCD are essential to the search for these novel particles. The PhD project will involve the calculation of the masses of exotic hybrid mesons with heavy quarks, using large scale numerical calculations running on supercomputers. The student will learn the techniques of numerical lattice QCD calculations and high performance computing.

Supervisor: Dr Craig McNeile